WWW.TOXpAss.com

< WHAT ARE MASTERKEYS?

In many organizations, engineers are granted unrestricted access to every server and all of
the data each server contains. This is often called "administrator" or "root" level access.
Such unfettered access is considered a "master key", just like a "master key" to an office
building can open every door.

And just like losing the "master key" to an office building can have disastrous consequences,
giving engineers "master keys" to servers and data can be more catastrophic when one is
lost, stolen, or abused.

%) WHY ARE MASTERKEYS A MISTAKE?

CASE 1: MALICIOUS INSIDER - UNLIKELY BUT LETHAL

A malicious insider is defined as an employee who has the necessary means to gain access
to a company's assets, and the motive to cause harm. This case is highly unlikely since only
employees who have gained a certain amount of trust inside the organization are given root
access, but this scenario cannot be ruled out as an impossibility.

Take, for instance, the malicious insider who stole gigabytes of data from Tesla and
transferred it to third parties. According to a study, more than 49% of companies are
worried about malicious attackers as this is a real and growing concern.

CASE 2: NEGLIGENT INSIDER - LIKELY AND UNTRACKABLE

Despite all the training given to IT professionals, most companies are still vulnerable and
likely to be a victim of phishing and other forms of social engineering attacks. In fact, over
34% of all breaches in 2018 were caused by insiders according to a study. Moreover, these
kinds of attacks are usually untrackable, and a company’s infrastructure may have already
been penetrated before anyone knows what has happened.

CASE 3: STOLEN CREDENTIALS - LIKELY AND TRACKABLE

Stolen laptops or stolen credentials are also likely outsider attacks that target employees
with the highest level of access rights, i.e. the engineers and the internal team. Once an
outsider obtains these pilfered credentials, they can easily access the company’s
infrastructure. If these credentials were shared amongst several employees, it must be
changed immediately, which locks out all other employees from accessing the servers until
they can be securely informed of the new credentials. If each person had their own
credentials for the server, only the affected person's credentials would have to be reset.

WWW.ToXxpass.com

%) HOW CAN THE POSSIBILITY OF DATA
BREACHES BE REDUCED?

Tech-savvy companies know the hazards of insider attacks, and restrict their engineer's
access by roles. Role-Based Access Control (RBAC) limits user access based on their roles
within an organization.

Deploying RBAC means that a user only has access to what they frequently need in order to
do their job. However, "frequently”" does not necessarily have to be on a daily, weekly, or
even monthly basis. The most secure option is to give engineers the lowest level of access
possible. When higher-level access is required, it should be monitored, controlled, and
timed.

How can a well-monitored, controlled, and timed access control mechanism be achieved?
The best solution is a system by which each engineer has his/her own key, and one that
allows access to a server for the pre-set duration of time — the shorter the better.

SSH Client Secure SSH
Client Initiates SSH Connection Host Server

Generate random
Hello There

message
Decrypted the encrypted
$Άu%[> random message using
\7 the client’s public key
Authentication Passed If random messages

Secret Key

match, send a affirmative
. response
> Agree on Session Key
SSH Client
»
= SSH Client

Encrypt message Encrypted Data (symmetrical algorithm) Public Key

with secretkey
Exchange Data using the Session Key
and a symmetrical crytographic algorithm

%) WHEN SHOULD PERMISSIONS EXPIRE?

Typically, an engineer is granted permissions from the time they start at a company until
they leave. However, a more dynamic option would be to grant permissions:

B Only during an on-call rotation
B Until a Jira type ticket is closed

B Only if the permission was used at least once in the last month

WWW.ToXxpass.com

%< WHAT IS AN SSHKEY?

An "SSH Key" is a cryptographically secure mechanism to prove one's identity to a server
when logging in over the network. It is similar in that respect to a long password, but that's
where the similarities end. An "SSH key" is actually composed of two parts: a private key in
one file and a public key in another. The contents of these two files are very different but
they complement each other and therefore are created at the same time.

The private half of the SSH key should be guarded and never, for example, leave the system
on which it is generated. The public half, however, can be freely shared. The private key
cannot be regenerated with any knowledge of the public key. By copying the public portion
of the key to any remote server where this user should have log-in permissions, the owner
of the private half will be granted access.

% HOW TO CREATE AN SSH KEY MANAGEMENT
SYSTEM?

The components required for creating an SSH key management system are:

U A database of SSH keys where the public portions of the users' SSH keys are stored
g A database of access rules describing which users can access which servers

6 An application server that supports simple web applications and APl endpoints

Nz~ 4]

L aad) %
N

DATABASE OF SSH KEYS API Endpoints LINUX SERVER

WWW.ToXpass.com

% HOW TO SET THIS UP:

U Traditionally, sshd daemon looks on-desk for a user’s authorized_keys file in the user’s
~/.ssh directory.
However, in this setup, sshd directive called AuthorizedKeysCommand is leveraged
(available in OpenSSH starting with version 6.2) to instruct sshd to look to the results
of the script located in “/usr/local/bin/get_keys.sh’. To do so, change the location inside
the sshd_config file. Note that if this fails, sshd still falls back to the on-disk authorized_keys
file. To do this, edit sshd_config file to:

ubuntu@host:~S$ vi /etc/ssh/sshd_config

[. . .1
AuthorizedKeysCommand /path/to/get_keys.sh
AuthorizedKeysCommandUser nobody

g The script in “/usr/local/bin/get_keys.sh™ can be written in any language, but Shell script or
Python is recommended. The first and only argument for this script is the Linux username of
the user requesting the keys. The script needs to re-issue the same query to the API
endpoint that is built. Use the curl command to do so. Eg. “curl
https://<endpoint>/get_keys/?user=$1". An example of the get_keys.sh (AWS specific) is

given below:

#!/bin/sh

user="$1"

hostname="hostname"

instance_id="curl -s -q -f
http://169.254.169.254/1atest/meta-data/instance-id"

curl -s -qg -f -m 5 "https://keyserver.example.com/sshkeys/?

user=${user}&hostname=S${hostname}&instance_id=S{instance_id}" 2>/dev/null
exit $?

Example request:

https://keyserver.example.com/sshkeys/?user=aren&hostname=prod-db-1&instanc
e_id=i-0b263919b6498b123

WWW.ToXxpass.com

6 Create the /sshkeys/ endpoint in the API such that it:
B Gets the username argument from the query string.
B Looks up the ssh keys for that user in the database, and
B Returns the ssh keys in the same format as an authorized_keys file: each SSH public key on
its own line.

Example:

def sshkeys(request):
hostname = request.GET[‘hostname’]
aws_instance_id = request.GET[‘aws_instance_id’]

username = request.GET[‘user’]

user get_user(username)

[]

if is_user_allowed_on_host(user, hostname, aws_instance_id):

keys
keys = user.keys

return HttpResponse("\n".join(key_text) for key in keys]),
content_type='text/plain')

v Build a web application that users can use to manage SSH keys. It is easy to

authenticate a user into the web application using OAuth from GSuite or Office 365.

The user should be allowed to add a new key and deactivate an old key.

<

DATABASE OF SSH KEYS
Simple Web Ul to let users login (OAuth),

upload their SSH keys (public half)

This basic setup can be extended by introducing a database of access rules that govern and
control access to the servers. By integrating with external APIs, access can be modified

based on conditions, and access can be reduced or removed accordingly.

WWW.fOXpass.com

B To make sure only current employees' SSH keys are distributed: cross-reference
against GSuite, Office365, Okta, or OnelLogin's API

B To enforce SSH key rotation: filter out SSH keys that are over 90/180/360 days old

| To restrict which servers a user may access: check the access rights defined for each
user. If the permission for the particular server does not exist, then prevent the user

from accessing the system

Example:

https://keyserver.example.com/sshkeys/?user=aren&hostname=prod-db-1

hostname=prod-db-1
“Production machine” match regex = “prod-.=*

Does the user “aren” have rights to any “Production machine” now?
or

hostname=prod-db-1
“Database machine” match regex = —-db-\d+$

Does the user “aren” have rights to any “Database machine” now?

XJ CONCLUSION

The possibilities of using this setup for SSH key management and access control are endless.
Security vulnerabilities and insider attacks are always a big concern for organizations that
have sensitive data that can be shared with engineers as they can have a monumental
impact if leaked. It always makes sense to offer employees the least privileges possible, and
to limit access to critical resources when access is given.

If Ashley Madison’s site, Target, or Tesla had better access control, it is possible they would
not have had such costly and public security breaches. SSH key management is a useful
mechanism to secure infrastructure and help prevent internal teams from leaking insider

knowledge to the outside world.

%) HOW FOXPASS CAN HELP

Foxpass offers an easy-to-use, full-featured SSH Key Management and privileged access
control products that effectively allows engineers to access the required servers for a
predefined amount of time. Additionally, Foxpass is a complete user and group
management system for Linux that synchronizes with popular directories like GSuite,
Office365, and Okta.

WWW.ToXxpass.com

